Pagination

Previous page

1 of 5
 Next page
Domain and Range: Numerical Representations
Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Transformations of Square Root and Rational Functions
Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x  c) for specific positive and negative values.
Transformations of Exponential and Logarithmic Functions
Given an exponential or logarithmic function, the student will describe the effects of parameter changes.
Solving Square Root Equations Using Tables and Graphs
Given a square root equation, the student will solve the equation using tables or graphs  connecting the two methods of solution.
Functions and their Inverses
Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.
Rational Functions: Predicting the Effects of Parameter Changes
Given parameter changes for rational functions, students will be able to predict the resulting changes on important attributes of the function, including domain and range and asymptotic behavior.
Domain and Range: Graphs
Given a function in graph form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Function Notation
Given a function in function notation form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Verbal Description
The student will be able to identify and determine reasonable values for the domain and range from any given verbal description.
Domain and Range: Contextual Situations
The student will be able to identify and determine reasonable values for the domain and range from any given contextual situation.
Modeling Data with Linear Functions
Given a scatterplot where a linear function is the best fit, the student will interpret the slope and intercepts, determine an equation using two data points, identify the conditions under which the function is valid, and use the linear model to predict data points.
Formulating Systems of Inequalities
Given a contextual situation, the student will formulate a system of two linear inequalities with two unknowns to model the situation.
Solving Systems of Equations Using Substitution
Given a system of two equations where at least one of the equations is linear, the student will solve the system using the algebraic method of substitution.
Solving Systems of Equations Using Elimination
Given a system of two equations where at least one of the equations is linear, the student will solve the system using the algebraic method of elimination.
Solving Systems of Equations with Three Variables
Given a system of three linear equations, the student will solve the system with a unique solution.
Solving Systems of Equations Using Matrices
Given a system of up to three linear equations, the student will solve the system using matrices with technology.
Transformations of Absolute Value Functions
Given an absolute value function, the student will analyze the effect on the graph when f(x) is replaced by af(x), f(bx), f(x – c), and f(x) + d for specific positive and negative real values.
8.01 Introduction to Confidence Intervals
In this video, students will be introduced to the construction and interpretation of confidence intervals.
8.02 Confidence Interval for One Mean
In this video, students will learn to construct a confidence interval for a population mean.
8.03 Visualizing a Confidence Interval
In this video, students will learn to visualize the construction of a confidence interval.