###
Using Linear Equations to Count Pecans

**Students will write linear equations in point-slope form given two points via a verbal description.**

###
45-45-90 Triangles

To learn the pattern of the side lengths of a 45-45-90 triangle, students complete a gallery walk, a card sort activity starting with using the Pythagorean theorem, and activity to locate if there is an error in a presented problem and if so to identify what the error is.

###
Working with Literal Equations

The lesson will provide a conceptual basis for illustrating the parallelism between solving multi-step equations and translating literal equations into solutions for specified variables.

###
Product and Quotient Properties of Exponents

This lesson helps students understand two foundational exponential properties: The Product and Quotient Properties of Exponents. Students will collaborate to formulate a rule for these properties. Ultimately, students should conclude that when the same bases are being multiplied, exponents will be added; and when the same bases are being divided, exponents will be subtracted. As the lesson progresses, students will apply these rules to simplify expressions of various difficulties.

###
Up, Up, and Away

Students will determine an appropriate tabular/graphic/formulaic linear solution given 3 sets of data points.

###
Laws of Exponents

Students will discover the laws of exponents using problem-solving skills.

**Texas Essential Knowledge and Skills (TEKS) Vertical Alignment**

Click below to learn about the TEKS related to the unit and Research Lesson. The highlighted student expectation(s) is the chosen focus for the Research Lesson.

###
Rate of Change

The students will determine the rate of change from tables and graphs by using the slope formula. The students will discover and interpret the real-world applications of rate of change.

**Texas Essential Knowledge and Skills (TEKS) Vertical Alignment**

Click below to learn about the TEKS related to the unit and Research Lesson. The highlighted student expectation(s) is the chosen focus for the Research Lesson.

###
Vertical Alignment Charts for Revised Mathematics TEKS

This resource provides vertical alignment charts for the revised mathematics TEKS.

###
Kid2Kid: Determining the Meaning of Slope and Intercepts

Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish

###
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.

###
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.

###
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.

###
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.

###
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.

###
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.

###
Domain and Range: Numerical Representations

Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Solving Problems With Similar Figures

Given problem situations involving similar figures, the student will use ratios to solve the problems.

###
Transformations of Square Root and Rational Functions

Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x - c) for specific positive and negative values.

###
Transformations of Exponential and Logarithmic Functions

Given an exponential or logarithmic function, the student will describe the effects of parameter changes.

###
Solving Square Root Equations Using Tables and Graphs

Given a square root equation, the student will solve the equation using tables or graphs - connecting the two methods of solution.