###
Using Linear Equations to Count Pecans

**Students will write linear equations in point-slope form given two points via a verbal description.**

###
Working with Literal Equations

The lesson will provide a conceptual basis for illustrating the parallelism between solving multi-step equations and translating literal equations into solutions for specified variables.

###
Product and Quotient Properties of Exponents

This lesson helps students understand two foundational exponential properties: The Product and Quotient Properties of Exponents. Students will collaborate to formulate a rule for these properties. Ultimately, students should conclude that when the same bases are being multiplied, exponents will be added; and when the same bases are being divided, exponents will be subtracted. As the lesson progresses, students will apply these rules to simplify expressions of various difficulties.

###
Kid2Kid: Determining the Meaning of Slope and Intercepts

Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Finding the Probabilities of Dependent and Independent Events

Given problem situations, the student will find the probability of the dependent and independent events.

###
Recognizing Misuses of Graphical or Numerical Information

Given a problem situation, the student will analyze data presented in graphical or tabular form by evaluating the predictions and conclusions based on the information given.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Comparing and Ordering Rational Numbers

Given a problem situation, the student will compare and order integers, percents, positive and negative fractions and decimals with or without a calculator.

###
Writing Equations to Describe Functional Relationships (Table → Equation)

Given a problem situation represented in verbal or symbolic form, the student will identify functions.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Writing Verbal Descriptions of Functional Relationships

Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.

###
Writing Inequalities to Describe Relationships (Graph → Symbolic)

Given the graph of an inequality, students will write the symbolic representation of the inequality.

###
Writing Inequalities to Describe Relationships (Symbolic → Graph)

Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Connecting Multiple Representations of Functions

The student will consider multiple representations of linear functions, including tables, mapping diagrams, graphs, and verbal descriptions.

###
Writing the Symbolic Representation of a Function (Graph → Symbolic)

Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.