Pagination

Previous page

1 of 4
 Next page
Objects in Motion
This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)
Using Logical Reasoning to Prove Conjectures about Circles
Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.
Generalizing Geometric Properties of Ratios in Similar Figures
Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.
Determining Area: Sectors of Circles
Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.
Making Conjectures About Circles and Segments
Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.
Determining Area: Regular Polygons and Circles
The student will apply the formula for the area of regular polygons to solve problems.
Making Conjectures About Circles and Angles
Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.
Domain and Range: Numerical Representations
Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Solving Problems With Similar Figures
Given problem situations involving similar figures, the student will use ratios to solve the problems.
Transformations of Square Root and Rational Functions
Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x  c) for specific positive and negative values.
Transformations of Exponential and Logarithmic Functions
Given an exponential or logarithmic function, the student will describe the effects of parameter changes.
Solving Square Root Equations Using Tables and Graphs
Given a square root equation, the student will solve the equation using tables or graphs  connecting the two methods of solution.
Functions and their Inverses
Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.
Rational Functions: Predicting the Effects of Parameter Changes
Given parameter changes for rational functions, students will be able to predict the resulting changes on important attributes of the function, including domain and range and asymptotic behavior.
Conservation of Momentum
This resource was created to support TEKS IPC(4)(E).
Domain and Range: Graphs
Given a function in graph form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Function Notation
Given a function in function notation form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.
Domain and Range: Verbal Description
The student will be able to identify and determine reasonable values for the domain and range from any given verbal description.
Domain and Range: Contextual Situations
The student will be able to identify and determine reasonable values for the domain and range from any given contextual situation.
Modeling Data with Linear Functions
Given a scatterplot where a linear function is the best fit, the student will interpret the slope and intercepts, determine an equation using two data points, identify the conditions under which the function is valid, and use the linear model to predict data points.