Study Edge Physics

In Physics, students will conduct laboratory and field investigations, use scientific methods during investigations, and make informed decisions using critical thinking and scientific problem solving. Students study a variety of topics that include: laws of motion; changes within physical systems and conservation of energy and momentum; forces; thermodynamics; characteristics and behavior of waves; and atomic, nuclear, and quantum physics. Students who successfully complete Physics will acquire factual knowledge within a conceptual framework, practice experimental design and interpretation, work collaboratively with colleagues, and develop critical thinking skills (TAC §112.39(b)(1)).
This video book is brought to you by TEA and Study Edge. It may be used to teach an entire Physics course or to supplement traditional Physics textbooks.
This open-education-resource instructional material by TEA is licensed under a Creative Commons Attribution 4.0 International Public License in accordance with Chapter 31 of the Texas Education Code.
Please provide feedback on Study Edge's open-education-resource instructional materials.
TEA Physics

Physics covers the scope and sequence requirements of a typical one-year physics course. The text provides comprehensive
coverage of physical concepts, quantitative examples and skills, and interesting applications. Physics has been
designed to meet and exceed the requirements of the relevant Texas Essential Knowledge and Skills (TEKS), while allowing
significant flexibility for instructors. Content requirements for Physics are prescribed in “Chapter 112. Texas Essential Knowledge and Skills for Science, Subchapter C. High School, 112.39. Physics, Beginning with School Year 2010-2011 (One Credit)”
(http://ritter.tea.state.tx.us/rules/tac/chapter112/ch112c.html#112.39).
This open-education-resource instructional material by TEA is licensed under a Creative Commons Attribution 4.0 International Public License in accordance with Chapter 31 of the Texas Education Code.
TEA AP® Physics 1: Algebra-Based

AP® Physics is the result of an effort to better serve teachers and students. The textbook focuses on the College Board’s AP® framework concepts and practices.
The AP® Physics curriculum framework outlines the two full-year physics courses AP® Physics 1: Algebra-Based and AP® Physics 2: Algebra-Based. These two courses focus on the big ideas typically included in the first and second semesters of an algebra-based, introductory college-level physics course. They provide students with the essential knowledge and skills required to support future advanced coursework in physics. The AP® Physics 1 curriculum includes mechanics, mechanical waves, sound, and electrostatics. The AP® Physics 2 curriculum focuses on thermodynamics, fluid statics, dynamics, electromagnetism, geometric and physical optics, quantum physics, atomic physics, and nuclear physics. AP® Science Practices emphasize inquiry-based learning and development of critical thinking and reasoning skills. Inquiry-based learning involves exploratory learning as a way to gain new knowledge. Students begin by making an observation regarding a given physics topic. Students then explore that topic using scientific methodology, as opposed to simply being told about it in lecture. In this way, students learn the content through self-discovery rather than memorization.
The AP® framework has identified seven major science practices, which are described using short phrases that include using representations and models to communicate information and solve problems, using mathematics appropriately, engaging in questioning, planning and implementing data collection strategies, analyzing and evaluating data, justifying scientific explanations, and connecting concepts. The AP® framework’s Learning Objectives merge content with one or more of the seven science practices that students should develop as they prepare for the AP® Physics exam. Each chapter of AP® Physics begins with a “Connection for AP® Courses” that explains how the content in the chapter sections align to the Big Ideas, Enduring Understandings, Essential Knowledge, and Learning Objectives of the AP® framework. These sections help students quickly and easily locate where components of the AP® framework are covered in the book, as well as clearly indicate material that, although interesting, exceeds the scope of the AP® framework. Content requirements for AP® Physics are prescribed in the College Board Publication Advanced Placement Course Description: Physics, published by The College Board (http://ritter.tea.state.tx.us/rules/tac/chapter112/ch112d.html#112.64) and (http://ritter.tea.state.tx.us/rules/tac/chapter112/ch112d.html#112.65).
This open-education-resource instructional material by TEA is licensed under a Creative Commons Attribution 4.0 International Public License in accordance with Chapter 31 of the Texas Education Code.
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.
Objects in Motion

This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)
Newton's Three Laws of Motion

This resource provides alternate or additional learning opportunities for students learning the three Newton's Laws of Motion. It includes a collection of interactive materilas, videos, and other digital media. Physics TEKS, (4)(D)
Light: Reflection and Refraction

This is a tier I instructional resource to provide a scaffolded learning experience for TEKS (5)(6)(C).
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.
Recognizing Misuses of Graphical or Numerical Information

Given a problem situation, the student will analyze data presented in graphical or tabular form by evaluating the predictions and conclusions based on the information given.
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.
Conservation of Momentum

This resource was created to support TEKS IPC(4)(E).
Newton's Law of Action-Reaction

This resource is to support TEKS (8)(6)(C), specifically the Newton's third law or the law of action-reaction.
Using Multiplication by a Constant Factor

Given problems involving proportional relationships, the student will use multiplication by a constant factor to solve the problems.
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.