###
4 OnTRACK Grade 7 Math: Number and Operations

Students will learn how to apply mathematical process standards to represent and use real numbers in a variety of forms.

###
19 OnTRACK Grade 7 Math: Proportionality

Students will learn to use proportional relationships to describe dilations; to explain proportional and non-proportional relationships involving slope; and to use proportional and non-proportional relationships to develop foundational concepts of functions.

###
7 OnTRACK Grade 7 Math: Expressions, Equations, and Relationships

Students will learn to develop mathematical relationships and make connections to geometric formulas; use geometry to solve problems; use one-variable equations or inequalities in problem situations; and use multiple representations to develop foundational concepts of simultaneous linear equations.

###
11 OnTRACK Grade 8 Math: Proportionality

Students learn to to use proportional relationships to describe dilation; explain proportional and non-proportional relationships involving slope; and use proportional and non-proportional relationships to develop foundational concepts of functions.

###
6 OnTRACK Algebra I: Properties and Attributes of Functions

Students will learn how to use the properties and attributes of functions.

###
Converting Between Measurement Systems

Given a real-world situation with measurements in either metric/SI or customary units, the student will solve a problem requiring them to convert from one system to the other.

###
Writing Verbal Descriptions of Functional Relationships

Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.

###
Writing Inequalities to Describe Relationships (Graph → Symbolic)

Given the graph of an inequality, students will write the symbolic representation of the inequality.

###
Writing Inequalities to Describe Relationships (Symbolic → Graph)

Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.

###
Writing the Symbolic Representation of a Function (Graph → Symbolic)

Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.

###
Determining Parent Functions (Verbal/Graph)

Given a graph or verbal description of a function, the student will determine the parent function.

###
Determining Reasonable Domains and Ranges (Verbal/Graph)

Given a graph and/or verbal description of a situation (both continuous and discrete), the student will identify mathematical domains and ranges and determine reasonable domain and range values for the given situations.

###
Interpreting Graphs

Given a graph, the student will analyze, interpret, and communcate the mathematical relationship represented and its characteristics.

###
Solving Quadratic Equations Using Algebraic Methods

Given a quadratic equation, the student will solve the equation by factoring, completing the square, or by using the quadratic formula.

###
Quadratics: Connecting Roots, Zeros, and x-Intercepts

Given a quadratic equation, the student will make connections among the solutions (roots) of the quadratic equation, the zeros of their related functions, and the horizontal intercepts (*x*-intercepts) of the graph of the function.

###
Using the Laws of Exponents to Solve Problems

Given problem situations involving exponents, the student will use the laws of exponents to solve the problems.

###
Formulating Systems of Equations (Verbal → Symbolic)

Given verbal descriptions of situations involving systems of linear equations the student will analyze the situations and formulate systems of equations in two unknowns to solve problems.

###
Solving Quadratic Equations Using Graphs

Given a quadratic equation, the student will use graphical methods to solve the equation.

###
Determining the Meaning of Intercepts

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the intercepts of the function and interpret the meaning of intercepts within the context of the situation.

###
Predicting the Effects of Changing y-Intercepts in Problem Situations

Given verbal, symbolic, numerical, or graphical representations of problem situations, the student will interpret and predict the effects of changing the *y*-intercept in the context of the situations.