Pagination

Previous page

1 of 2
 Next page
Can We Get There?
Students will calculate the rate of change and yintercept from a realworld problem represented in a graph, a table, and/or an equation. They will then display and present their findings to the class.
Approximating the Value of Irrational Numbers
Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.
Expressing Numbers in Scientific Notation
Given problem situations, the student will express numbers in scientific notation.
Comparing and Ordering Rational Numbers
Given a problem situation, the student will compare and order integers, percents, positive and negative fractions and decimals with or without a calculator.
Determining if a Relationship is a Functional Relationship
The student is expected to gather and record data & use data sets to determine functional relationships between quantities.
Graphing Dilations, Reflections, and Translations
Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.
Graphing and Applying Coordinate Dilations
Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.
Developing the Concept of Slope
Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.
Generating Different Representations of Relationships
Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.
Predicting, Finding, and Justifying Data from a Graph
Given data in the form of a graph, the student will use the graph to interpret solutions to problems.
Comparing and Contrasting Proportional and NonProportional Linear Relationships
Given problem solving situations, the student will solve the problems by comparing and contrasting proportional and nonproportional linear relationships.
Determining Slopes from Equations, Graphs, and Tables
Given algebraic, tabular, and graphical representations of linear functions, the student will determine the slope of the relationship from each of the representations.
Demonstrating the Pythagorean Theorem
Given pictures or models that represent the Pythagorean Theorem, the student will demonstrate an understanding of the theorem.
Graphing Proportional Relationships
Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.
Analyzing Scatterplots
Given a set of data, the student will be able to generate a scatterplot, determine whether the data are linear or nonlinear, describe an association between the two variables, and use a trend line to make predictions for data with a linear association.
Writing Geometric Relationships
Given information in a geometric context, students will be able to use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angleangle criterion for similarity of triangles.
Solutions of Simultaneous Equations
Given a graph of two simultaneous equations, students will be able to interpret the intersection of the graphs as the solution to the two equations.
Comparing and Explaining Transformations
Given rotations, reflections, translations, and dilations, students will be able to develop algebraic representations for rotations, and generalize and then compare and contrast the properties of congruence transformations and noncongruence transformations.
Mean Absolute Deviation
Given a set of data with no more than 10 data points, students will be able to determine and use the mean absolute deviation to describe the spread of the data.
Generalizing about Populations from Random Samples
Given a population with known characteristics, students will be able to use a variety of methods to generate random samples of the same size in order to understand how a random sample is representative of a population.