Pagination

Previous page

1 of 3
 Next page
Working with Literal Equations
The lesson will provide a conceptual basis for illustrating the parallelism between solving multistep equations and translating literal equations into solutions for specified variables.
Kid2Kid: Determining the Meaning of Slope and Intercepts
Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish
Writing Equations to Describe Functional Relationships (Table → Equation)
Given a problem situation represented in verbal or symbolic form, the student will identify functions.
Writing Verbal Descriptions of Functional Relationships
Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.
Writing Inequalities to Describe Relationships (Graph → Symbolic)
Given the graph of an inequality, students will write the symbolic representation of the inequality.
Writing Inequalities to Describe Relationships (Symbolic → Graph)
Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.
Connecting Multiple Representations of Functions
The student will consider multiple representations of linear functions, including tables, mapping diagrams, graphs, and verbal descriptions.
Writing the Symbolic Representation of a Function (Graph → Symbolic)
Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.
Determining Parent Functions (Verbal/Graph)
Given a graph or verbal description of a function, the student will determine the parent function.
Determining Reasonable Domains and Ranges (Verbal/Graph)
Given a graph and/or verbal description of a situation (both continuous and discrete), the student will identify mathematical domains and ranges and determine reasonable domain and range values for the given situations.
Interpreting Graphs
Given a graph, the student will analyze, interpret, and communcate the mathematical relationship represented and its characteristics.
Interpreting Scatterplots
Given scatterplots that represent problem situations, the student will determine if the data has strong vs weak correlation as well as positive, negative, or no correlation.
Making Predictions and Critical Judgments (Table/Verbal)
Given verbal descriptions and tables that represent problem situations, the student will make predictions for realworld problems.
Collecting Data and Making Predictions
Given an experimental situation, the student will write linear functions that provide a reasonable fit to data to estimate the solutions and make predictions.
Writing Expressions to Model Patterns (Table/Pictorial → Symbolic)
Given a pictorial or tabular representation of a pattern and the value of several of their terms, the student will write a formula for the nth term of a sequences.
Finding Specific Function Values (Verbal/Symbolic)
Given a verbal and symbolic representations of a function, the student will find specific function values.
Simplifying Polynomial Expressions
Given verbal and symbolic representations of polynomial expressions, the student will simplify the expression.
Solving Equations and Inequalities
Given verbal and symbolic representations in the form of equations or inequalities, the student will transform and solve the equations or inequalities.
Analyzing the Effects of the Changes in m and b on the Graph of y = mx + b
Given algebraic, graphical, or verbal representations of linear functions, the student will determine the effects on the graph of the parent function f(x) = x.
Writing Equations of Lines
Given two points, the slope and a point, or the slope and the yintercept, the student will write linear equations in two variables.