###
Using Theoretical and Experimental Probability to Make Predictions

Given an event to simulate, the student will use theoretical probabilities and experimental results to make predictions and decisions.

###
Estimating and Finding Solutions to Problems Involving Similarity and Rates

Given application problems involving similarity and rates, the student will estimate and determine the solutions to the problems.

###
Generating Similar Figures Using Dilations

Given a figure, the student will identify the scale factor used for a dilation, and use a dilation by a scale factor, including enlargements and reductions, to generate similar figures.

###
Using Geometric Concepts and Properties to Solve Problems

Given pictorial representations, the student will use geometric concepts and properties to solve problems from art and architecture.

###
Using Proportional Relations to Find Missing Measurements of Two-Dimensional Figures

Given pictorial representations and problem situations of 2-dimensional figures or 3-dimensional figures, the student will use proportional reasoning to find a missing measurement.

###
Using Rational Numbers to Solve Problems

Given a problem situation in verbal form, students will select and use an operation involving rational numbers in order to solve the problem.

###
Selecting and Using Appropriate Forms of Rational Numbers

Given real-life problems, the student will select an appropriate method and solve problems involving proportional relationships.

###
Exploring Probability with Dependent Events

The student will investigate and develop the concept of dependent probability, including formalizing procedures related to dependent probability and applications of dependent probability.

###
Finding Lateral and Total Surface Area

Given concrete models and nets (2-dimensional models) of prisms, pyramids, and cylinders, the student will find and determine the lateral and total surface area.

###
Gravitational Force

This resource provides flexible alternate or additional learning activities for students learning about the gravitational attraction between objects of different masses at different distances. IPC TEKS (4)(F)

###
3.02 Average Speed and Average Velocity

In this video, we explore the difference between speed and velocity, and their relationship to distance and displacement.

###
3.03 Kinematic Equations in One Dimension

In this video, we introduce the three primary kinematics equations and apply them to one-dimensional problems. The term "acceleration" is also introduced.

###
3.04 Kinematic Equations Graphical Analysis

In this video, we analyze hypothetical experiments by graphing position, velocity, and acceleration versus time, qualitatively.

###
3.05 Kinematic Equations in Two Dimensions

In this video, we apply the three primary kinematic equations to projectile motion problems.

###
3.06 Relative Motion

In this video, the inherent (classical) relativity of velocity measurements is explored, qualitatively and quantitatively, in both one and two dimensions.

###
3.01 Distance and Displacement

In this video, we explore the difference between distance traveled (an example of a scalar) and displacement (an example of a vector), and we review some basic vector math.

###
Recognizing Misuses of Graphical or Numerical Information

Given a problem situation, the student will analyze data presented in graphical or tabular form by evaluating the predictions and conclusions based on the information given.

###
Evaluating Methods of Sampling from a Set of Data

Given a problem situation, the student will evaluate a method of sampling to determine the validity of an inference made from the set of data.

###
Newton's Law of Inertia

This resource provides instructional resources for Newton's First Law, the law of inertia.

###
Conservation of Momentum

This resource was created to support TEKS IPC(4)(E).