###
More Super Duper Math

**Students will gather objects to compare quantities and justify their answers pictorially and verbally. They will use their vocabulary posters and accountable talk menus to discuss with their partners. **

###
Centers in Subtraction

**Students will participate in multiple centers including a guided math center that reinforces subtraction concepts. **

###
Going Beyond with Number Bonds

Students will use number bonds to compose and decompose numbers to 10.

###
The Shapes Around Us

Students will make connections between real-world objects and the attributes of two-dimensional shapes.

###
The Picture Graph Party

Students will explore and create picture graphs through collaboration and group work.

**Texas Essential Knowledge and Skills (TEKS) Vertical Alignment**

Click below to learn about the TEKS related to the unit and Research Lesson. The highlighted student expectation(s) is the chosen focus for the Research Lesson.

###
Solving Rational Equations

Students will discuss and formulate an equation to solve an engaging real-world problem. They will use manipulatives to describe how to find the common denominator they need to solve the equation. They will break up into groups and solve for a more complicated problem.

**Texas Essential Knowledge and Skills (TEKS) Vertical Alignment**

Click below to learn about the TEKS related to the unit and Research Lesson. The highlighted student expectation(s) is the chosen focus for the Research Lesson.

###
Balancing Act

**Students use a pan balance model and manipulatives to identify a total that balances two parts. The use of the pan balance will help to develop the concept of equality. Students will develop the language of equality by reading and identifying the following expressions; balances, is the same as, is equal to, and equa l before the symbol for equality is introduced. Students will identify an unknown part in a balance situation. Students will communicate ideas, explain, and justify how they solved problems.**

###
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.

###
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.

###
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.

###
Interactive Math Glossary

###
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.

###
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.

###
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.

###
Domain and Range: Numerical Representations

Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Solving Problems With Similar Figures

Given problem situations involving similar figures, the student will use ratios to solve the problems.

###
Transformations of Square Root and Rational Functions

Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x - c) for specific positive and negative values.

###
Transformations of Exponential and Logarithmic Functions

Given an exponential or logarithmic function, the student will describe the effects of parameter changes.

###
Solving Square Root Equations Using Tables and Graphs

Given a square root equation, the student will solve the equation using tables or graphs - connecting the two methods of solution.

###
Functions and their Inverses

Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.