###
19 OnTRACK Grade 7 Math: Proportionality

Students will learn to use proportional relationships to describe dilations; to explain proportional and non-proportional relationships involving slope; and to use proportional and non-proportional relationships to develop foundational concepts of functions.

###
4 OnTRACK Grade 8 Math: Number and Operations

Students will learn how to apply mathematical process standards to represent and use real numbers in a variety of forms.

###
11 OnTRACK Grade 8 Math: Proportionality

Students learn to to use proportional relationships to describe dilation; explain proportional and non-proportional relationships involving slope; and use proportional and non-proportional relationships to develop foundational concepts of functions.

###
9 OnTRACK Grade 8 Math: Expressions, Equations, and Relationships

Students will learn to develop mathematical relationships and make connections to geometric formulas; use geometry to solve problems; use one-variable equations or inequalities in problem situations; and use multiple representations to develop foundational concepts of simultaneous linear equations.

###
5 OnTRACK Grade 8 Math: Two-Dimensional Shapes, Measurement, and Data

Students will learn to develop transformational geometry concepts and to use statistical procedures to describe data.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Kid2Kid: Determining the Meaning of Slope and Intercepts

Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish

###
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Solving Quadratic Equations Using Algebraic Methods

Given a quadratic equation, the student will solve the equation by factoring, completing the square, or by using the quadratic formula.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Solving Systems of Equations with Graphs

Given verbal and/or algebraic descriptions of situations involving systems of linear equations, the student will solve the system of equations using graphs.

###
Analyzing the Effects of the Changes in "a" on the Graph y = ax^2 + c

Given verbal, graphical, or symbolic descriptions of the graph of* y = ax^2 + c*, the student will investigate, describe, and predict the effects on the graph when *a* is changed.

###
Solving Quadratic Equations Using Concrete Models

Given a quadratic equation, the student will use tiles to factor and solve the equation.

###
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.