###
19 OnTRACK Grade 7 Math: Proportionality

Students will learn to use proportional relationships to describe dilations; to explain proportional and non-proportional relationships involving slope; and to use proportional and non-proportional relationships to develop foundational concepts of functions.

###
4 OnTRACK Grade 8 Math: Number and Operations

Students will learn how to apply mathematical process standards to represent and use real numbers in a variety of forms.

###
11 OnTRACK Grade 8 Math: Proportionality

Students learn to to use proportional relationships to describe dilation; explain proportional and non-proportional relationships involving slope; and use proportional and non-proportional relationships to develop foundational concepts of functions.

###
9 OnTRACK Grade 8 Math: Expressions, Equations, and Relationships

Students will learn to develop mathematical relationships and make connections to geometric formulas; use geometry to solve problems; use one-variable equations or inequalities in problem situations; and use multiple representations to develop foundational concepts of simultaneous linear equations.

###
5 OnTRACK Grade 8 Math: Two-Dimensional Shapes, Measurement, and Data

Students will learn to develop transformational geometry concepts and to use statistical procedures to describe data.

###
Pilot Geometry

In this course, students will build understanding of the following modules: Reasoning with Shapes, Establishing Congruence, Investigating Proportionality, Connecting Geometric and Algebraic Descriptions, and Making Informed Decisions.

Each module is broken up into topics where you will find teacher materials to guide the instruction and the student materials both used in the classroom for learning together and learning individually.

The agency developed these learning resources as a contingency option for school districts during COVID. All resources are optional. Prior to publication, materials go through a rigorous third-party review. Review criteria include TEKS alignment, support for all learners, progress monitoring, implementation supports, and more. Products also are subject to a focus group of Texas educators.

###
Pilot Algebra Foundations

The primary purpose of the Algebra Foundations course is to promote opportunities for deep understanding of core algebraic concepts to develop algebraic thinkers. The course is composed of 5 topics: Operating with Rational Numbers, Expressions and Equations, Developing Function Foundations, Modeling Linear Equations, and Quadratics. Throughout these topics, students have the opportunity to develop foundational understandings and draw connections to key concepts.

This course is intended to strengthen foundational conceptual understandings from middle school math through Algebra I and is designed to be flexible in meeting the needs of students. Your individual course is created based solely on data that suggests which topics will best develop your students as algebraic thinkers. Each learning session is designed to further develop a skill, and together, these sessions connect skills and concepts to key algebraic understandings. The student learning experience of the Algebra Foundations course promotes conceptual understanding through a focus on active learning and making sense of the mathematics.

###
Developing the Concept of Slope

Given multiple representations of linear functions, the student will develop the concept of slope as a rate of change.

###
Generating Different Representations of Relationships

Given problems that include data, the student will generate different representations, such as a table, graph, equation, or verbal description.

###
Approximating the Value of Irrational Numbers

Given problem situations that include pictorial representations of irrational numbers, the student will find the approximate value of the irrational numbers.

###
Expressing Numbers in Scientific Notation

Given problem situations, the student will express numbers in scientific notation.

###
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.

###
Determining if a Relationship is a Functional Relationship

The student is expected to gather and record data & use data sets to determine functional relationships between quantities.

###
Graphing Dilations, Reflections, and Translations

Given a coordinate plane, the student will graph dilations, reflections, and translations, and use those graphs to solve problems.

###
Graphing and Applying Coordinate Dilations

Given a coordinate plane or coordinate representations of a dilation, the student will graph dilations and use those graphs to solve problems.

###
Predicting, Finding, and Justifying Data from a Graph

Given data in the form of a graph, the student will use the graph to interpret solutions to problems.

###
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.

###
Analyzing Scatterplots

Given a set of data, the student will be able to generate a scatterplot, determine whether the data are linear or non-linear, describe an association between the two variables, and use a trend line to make predictions for data with a linear association.

###
Writing Geometric Relationships

Given information in a geometric context, students will be able to use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.