6 OnTRACK Algebra I: Properties and Attributes of Functions

Students will learn how to use the properties and attributes of functions.
Study Edge Chemistry

In Chemistry, students will conduct laboratory and field investigations and make informed decisions using critical thinking and scientific problem solving. Students will study a variety of topics that include characteristics of matter, use of the Periodic Table, development of atomic theory and chemical bonding, chemical stoichiometry, gas laws, solution chemistry, thermochemistry, and nuclear chemistry. Students will investigate how chemistry is an integral part of our daily lives (TAC §112.35(b)(1)).
This video book is brought to you by TEA and Study Edge. It may be used to teach an entire Chemistry course or to supplement traditional Chemistry textbooks.
This open-education-resource instructional material by TEA is licensed under a Creative Commons Attribution 4.0 International Public License in accordance with Chapter 31 of the Texas Education Code.
Please provide feedback on Study Edge's open-education-resource instructional materials.
Covalent Bonding: Electron Dot Diagrams

Given descriptions, diagrams, scenarios, or chemical symbols, students will model covalent bonds using electron dot formula (Lewis structures).
What’s Trending with the Elements?

This resource, aligned with Chemistry TEKS (5)(C), provides alternative or additional tier-one learning options for students using the periodic table to identify and explain trends.
Writing Verbal Descriptions of Functional Relationships

Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.
Writing Inequalities to Describe Relationships (Graph → Symbolic)

Given the graph of an inequality, students will write the symbolic representation of the inequality.
Writing Inequalities to Describe Relationships (Symbolic → Graph)

Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.
Connecting Multiple Representations of Functions

The student will consider multiple representations of linear functions, including tables, mapping diagrams, graphs, and verbal descriptions.
Writing the Symbolic Representation of a Function (Graph → Symbolic)

Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.
Determining Parent Functions (Verbal/Graph)

Given a graph or verbal description of a function, the student will determine the parent function.
Determining Reasonable Domains and Ranges (Verbal/Graph)

Given a graph and/or verbal description of a situation (both continuous and discrete), the student will identify mathematical domains and ranges and determine reasonable domain and range values for the given situations.
Interpreting Graphs

Given a graph, the student will analyze, interpret, and communcate the mathematical relationship represented and its characteristics.
Solving Quadratic Equations Using Algebraic Methods

Given a quadratic equation, the student will solve the equation by factoring, completing the square, or by using the quadratic formula.
Quadratics: Connecting Roots, Zeros, and x-Intercepts

Given a quadratic equation, the student will make connections among the solutions (roots) of the quadratic equation, the zeros of their related functions, and the horizontal intercepts (x-intercepts) of the graph of the function.
Using the Laws of Exponents to Solve Problems

Given problem situations involving exponents, the student will use the laws of exponents to solve the problems.
Formulating Systems of Equations (Verbal → Symbolic)

Given verbal descriptions of situations involving systems of linear equations the student will analyze the situations and formulate systems of equations in two unknowns to solve problems.
Solving Quadratic Equations Using Graphs

Given a quadratic equation, the student will use graphical methods to solve the equation.
Determining the Meaning of Intercepts

Given algebraic, tabular, and graphical representations of linear functions, the student will determine the intercepts of the function and interpret the meaning of intercepts within the context of the situation.