45-45-90 Triangles
To learn the pattern of the side lengths of a 45-45-90 triangle, students complete a gallery walk, a card sort activity starting with using the Pythagorean theorem, and activity to locate if there is an error in a presented problem and if so to identify what the error is.
Using Theoretical and Experimental Probability to Make Predictions

Given an event to simulate, the student will use theoretical probabilities and experimental results to make predictions and decisions.
6.08 Bonus Video: Law of Sines—The Ambiguous Case

The Law of Sines can be used to solve for sides and angles of oblique triangles. However, in some cases more than one triangle may satisfy the given conditions. We refer to this as an ambiguous case.
8 Chapter 5: Introduction to Trigonometry and Graphs

In this chapter, we will explore angle measures and the trigonometric ratios, including graphing and inverses.
5 Chapter 7: Sequences and Series

In this chapter, we introduce sequences and series, some of their applications, and the Binomial Theorem.
3 Chapter 4: Systems of Equations

In this chapter, we will explore the methods used to solve systems of equations, and real-world situations involving systems of equations.
6 Chapter 2: Polynomial and Rational Functions

In this chapter, we will explore beyond linear functions and learn about polynomial and rational functions.
8 Chapter 6: Trigonometric Identities and Applications

In this chapter, students will learn a robust list of trigonometric identities along with their applications. Students will also be introduced to vectors.
7 Chapter 8: Conic Sections, Parametric Equations, and Polar Coordinates

In this chapter, we introduce conic sections, parametric equations, and polar coordinates.
5 Chapter 1: Introduction to Functions and Graphs

In this chapter, students are introduced to lines, functions, and graphs of functions.
8 Chapter 3: Exponential and Logarithmic Functions

In this chapter, students are introduced to exponential and logarithmic functions. Students will learn about the functions' graphs, how to solve equations involving those functions, and their real-world applications.
4 OnTRACK Grade 7 Math: Number and Operations

Students will learn how to apply mathematical process standards to represent and use real numbers in a variety of forms.
19 OnTRACK Grade 7 Math: Proportionality

Students will learn to use proportional relationships to describe dilations; to explain proportional and non-proportional relationships involving slope; and to use proportional and non-proportional relationships to develop foundational concepts of functions.
7 OnTRACK Grade 7 Math: Expressions, Equations, and Relationships

Students will learn to develop mathematical relationships and make connections to geometric formulas; use geometry to solve problems; use one-variable equations or inequalities in problem situations; and use multiple representations to develop foundational concepts of simultaneous linear equations.
4 OnTRACK Grade 8 Math: Number and Operations

Students will learn how to apply mathematical process standards to represent and use real numbers in a variety of forms.
11 OnTRACK Grade 8 Math: Proportionality

Students learn to to use proportional relationships to describe dilation; explain proportional and non-proportional relationships involving slope; and use proportional and non-proportional relationships to develop foundational concepts of functions.
9 OnTRACK Grade 8 Math: Expressions, Equations, and Relationships

Students will learn to develop mathematical relationships and make connections to geometric formulas; use geometry to solve problems; use one-variable equations or inequalities in problem situations; and use multiple representations to develop foundational concepts of simultaneous linear equations.
5 OnTRACK Grade 8 Math: Two-Dimensional Shapes, Measurement, and Data

Students will learn to develop transformational geometry concepts and to use statistical procedures to describe data.
Graphing Proportional Relationships

Given a proportional relationship, students will be able to graph a set of data from the relationship and interpret the unit rate as the slope of the line.
Analyzing Scatterplots

Given a set of data, the student will be able to generate a scatterplot, determine whether the data are linear or non-linear, describe an association between the two variables, and use a trend line to make predictions for data with a linear association.