###
6 OnTRACK Algebra I: Properties and Attributes of Functions

Students will learn how to use the properties and attributes of functions.

###
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.

###
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.

###
Homeostasis: Ecological Systems

Given images, videos, or scenarios, identify and describe the responses of organisms, populations, and communities to various changes in their external environment.

###
Biological Systems: Homeostasis

Identify and describe internal feedback mechanisms involved in maintaining homeostasis given scenarios, illustrations, or descriptions.

###
Relationships Between Organisms: Food Chains, Webs, and Pyramids

Given illustrations, students will analyze the flow of matter and energy in food chains, food webs, and ecological pyramids.

###
Organisms' Adaptations

Given scenarios, illustrations. or descriptions, the student will compare variations and adaptations of organisms in different ecosystems.

###
Cell Homeostasis: Osmosis

The focus of this resource is cell homeostasis and, more specifically, osmosis. Students investigate the concept through a virtual lab, recording and analyzing data, creating sketches to represent vocabulary, and discovering the role of aquaporins in water transport through the cell membrane.

###
Writing Verbal Descriptions of Functional Relationships

Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.

###
Writing Inequalities to Describe Relationships (Graph → Symbolic)

Given the graph of an inequality, students will write the symbolic representation of the inequality.

###
Writing Inequalities to Describe Relationships (Symbolic → Graph)

Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.

###
Connecting Multiple Representations of Functions

The student will consider multiple representations of linear functions, including tables, mapping diagrams, graphs, and verbal descriptions.

###
Writing the Symbolic Representation of a Function (Graph → Symbolic)

Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.

###
Determining Parent Functions (Verbal/Graph)

Given a graph or verbal description of a function, the student will determine the parent function.

###
Determining Reasonable Domains and Ranges (Verbal/Graph)

Given a graph and/or verbal description of a situation (both continuous and discrete), the student will identify mathematical domains and ranges and determine reasonable domain and range values for the given situations.

###
Interpreting Graphs

Given a graph, the student will analyze, interpret, and communcate the mathematical relationship represented and its characteristics.

###
Cell Comparisons

Learners compare a variety of prokaryotes and eukaryotes to determine similarities and differences among and between them.

###
Equipment for Biology

Given investigation scenarios, students will determine the equipment that best fits the procedure.

###
Disruptions of the Cell Cycle: Cancer

Given illustrations or descriptions, students will identify disruptions of the cell cycle that lead to diseases such as cancer.

###
Mechanisms of Genetics: DNA Changes

Given illustrations or partial DNA sequences, students will identify changes in DNA and the significance of these changes.