Mendelian Genetics Using Monohybrids
Students will work collaboratively through a fictitious, real-world scenario to determine the probability of each breeding pair of dogs producing offspring with the desired trait for a fictitious client.
Taxonomy Standards

Given examples, students will recognize the importance of taxonomy to the scientific community.
Taxonomy: Major Groups

Given illustrations or descriptions, students will determine the classification of organisms into domains and kingdoms.
Homeostasis: Ecological Systems

Given images, videos, or scenarios, identify and describe the responses of organisms, populations, and communities to various changes in their external environment.
Biological Systems: Homeostasis

Identify and describe internal feedback mechanisms involved in maintaining homeostasis given scenarios, illustrations, or descriptions.
Relationships Between Organisms: Food Chains, Webs, and Pyramids

Given illustrations, students will analyze the flow of matter and energy in food chains, food webs, and ecological pyramids.
Organisms' Adaptations

Given scenarios, illustrations. or descriptions, the student will compare variations and adaptations of organisms in different ecosystems.
Homeostasis—Succession

Given scenarios, illustrations, or descriptions, the student will identify the process of ecological succession and the impact that succession has on populations and species diversity.
Predict Monohybrid Crosses

Biology Kid2Kid videos present biology concepts taught to a student by a student. This resource contains videos that explain monohybrid crosses in both English and Spanish.
Cell Homeostasis: Osmosis

The focus of this resource is cell homeostasis and, more specifically, osmosis. Students investigate the concept through a virtual lab, recording and analyzing data, creating sketches to represent vocabulary, and discovering the role of aquaporins in water transport through the cell membrane.
Objects in Motion

This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)
Using Logical Reasoning to Prove Conjectures about Circles

Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.
Drawing Conclusions about Three-Dimensional Figures from Nets

Given a net for a three-dimensional figure, the student will make conjectures and draw conclusions about the three-dimensional figure formed by the given net.
Generalizing Geometric Properties of Ratios in Similar Figures

Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.
Determining Area: Sectors of Circles

Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.
Making Conjectures About Circles and Segments

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.
Determining Area: Regular Polygons and Circles

The student will apply the formula for the area of regular polygons to solve problems.
Making Conjectures About Circles and Angles

Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.
Solving Problems With Similar Figures

Given problem situations involving similar figures, the student will use ratios to solve the problems.
Cell Comparisons

Learners compare a variety of prokaryotes and eukaryotes to determine similarities and differences among and between them.