Pagination

Previous page

1 of 6
 Next page
454590 Triangles
To learn the pattern of the side lengths of a 454590 triangle, students complete a gallery walk, a card sort activity starting with using the Pythagorean theorem, and activity to locate if there is an error in a presented problem and if so to identify what the error is.
Working with Literal Equations
The lesson will provide a conceptual basis for illustrating the parallelism between solving multistep equations and translating literal equations into solutions for specified variables.
Objects in Motion
This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)
Kid2Kid: Determining the Meaning of Slope and Intercepts
Kid2Kid videos on determining the meaning of slope and intercepts in English and Spanish
Using Logical Reasoning to Prove Conjectures about Circles
Given conjectures about circles, the student will use deductive reasoning and counterexamples to prove or disprove the conjectures.
Generalizing Geometric Properties of Ratios in Similar Figures
Students will investigate patterns to make conjectures about geometric relationships and apply the definition of similarity, in terms of a dilation, to identify similar figures and their proportional sides and congruent corresponding angles.
Determining Area: Sectors of Circles
Students will use proportional reasoning to develop formulas to determine the area of sectors of circles. Students will then solve problems involving the area of sectors of circles.
Making Conjectures About Circles and Segments
Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties and relationships among the resulting segments.
Determining Area: Regular Polygons and Circles
The student will apply the formula for the area of regular polygons to solve problems.
Making Conjectures About Circles and Angles
Given examples of circles and the lines that intersect them, the student will use explorations and concrete models to formulate and test conjectures about the properties of and relationships among the resulting angles.
Solving Problems With Similar Figures
Given problem situations involving similar figures, the student will use ratios to solve the problems.
Conservation of Momentum
This resource was created to support TEKS IPC(4)(E).
Writing Equations to Describe Functional Relationships (Table → Equation)
Given a problem situation represented in verbal or symbolic form, the student will identify functions.
Writing Verbal Descriptions of Functional Relationships
Given a problem situation containing a functional relationship, the student will verbally describe the functional relationship that exists.
Writing Inequalities to Describe Relationships (Graph → Symbolic)
Given the graph of an inequality, students will write the symbolic representation of the inequality.
Writing Inequalities to Describe Relationships (Symbolic → Graph)
Describe functional relationships for given problem situations, and write equations or inequalities to answer questions arising from the situations.
Connecting Multiple Representations of Functions
The student will consider multiple representations of linear functions, including tables, mapping diagrams, graphs, and verbal descriptions.
Writing the Symbolic Representation of a Function (Graph → Symbolic)
Given the graph of a linear or quadratic function, the student will write the symbolic representation of the function.
Determining Parent Functions (Verbal/Graph)
Given a graph or verbal description of a function, the student will determine the parent function.
Determining Reasonable Domains and Ranges (Verbal/Graph)
Given a graph and/or verbal description of a situation (both continuous and discrete), the student will identify mathematical domains and ranges and determine reasonable domain and range values for the given situations.