Making Solutions

Given graphs, scenarios, illustrations, or descriptions, the student will determine how different processes affect solubility in aqueous solutions.
Precipitation Reactions

Given graphs, scenarios, illustrations, or descriptions, the student will determine how different processes affect solubility in aqueous solutions.
Nomenclature of Ionic Compounds

Given descriptors, diagrams. or scenarios, students will write and name the chemical formulas of common polyatomic ions and ionic compounds containing main group or transition metals and bases.
Mole Conversions

Given descriptions or chemical formula of a substance, students will convert between mass, moles, and particles for a sample of material.
Quantifying Changes in Chemical Reactions: Balancing Equations

Given descriptions or chemical formulas of the reactants and the products of chemical reactions, students will apply the law of conservation of mass and manipulate coefficients to balance chemical equations.
Conservation of Momentum

This resource was created to support TEKS IPC(4)(E).
The Bohr Model

Students will understand Bohr’s experimental design and conclusions that lead to the development of his model of the atom, as well as the limitations of his model.
Valence Shell Electron Pair Repulsion

Given illustrations or descriptions, students will predict the shape of molecules based upon the extent of the electron pair electrostatic repulsion.
Chemical Bonding: Metallic Bonds

Given scenarios or diagrams, students will describe the nature of metallic bonding and explain properties such as thermal and electrical conductivity, malleability, and ductility of metals.
Electron Configuration

Given descriptors, diagrams, and chemical symbols, students will use the periodic table to determine the electron configuration of neutral atoms.
Nomenclature: Covalent Compounds

Given descriptions, diagrams, or scenarios, students will write and name the chemical formulas of binary covalent compounds.
Ionic Bonds: Electron Dot Formulas

Given descriptions, diagrams, scenarios, or chemical symbols, students will model ionic bonds using electron dot formulas.
Moles and Molar Mass

Given descriptions or chemical formula of a substance, students will use the concept of a mole to relate atomic mass to molar mass.
Types of Solutions: Saturated, Supersaturated, or Unsaturated

Given scenarios, graphs, diagrams, or illustrations, the student will determine the type of solution such as saturated, supersaturated, or unsaturated.
How Do We Quantify the Building Blocks of Matter?

This resource provides flexible alternate or additional learning opportunities for students learning about the mole concept, Chemistry TEKS (8)(A).
Objects in Motion

This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)
What’s Trending with the Elements?

This resource, aligned with Chemistry TEKS (5)(C), provides alternative or additional tier-one learning options for students using the periodic table to identify and explain trends.
Properties: Extensive and Intensive

Given descriptions or illustrations of properties, students will determine whether the property is chemical or physical, and if it is physical, if it is intensive or extensive.
Periodic Table Families

Given descriptions or specific element groups, students will use a Periodic Table to relate properties of chemical families to position on the table.
Solids, Liquids, and Gases

Given descriptions, scenarios, or illustrations, students will distinguish between the compressibility, structure, shape, and volume of solids, liquids, and gases.